Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Nutrients ; 15(11)2023 Jun 05.
Article in English | MEDLINE | ID: covidwho-20242223

ABSTRACT

Over the last few years, we have experienced the infection generated by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) often resulting in an exaggerated immune reaction and systemic inflammation. The preferred treatments against SARS-CoV-2 were those that mitigated immunological/inflammatory dysfunction. A variety of observational epidemiological studies have reported that vitamin D deficiency is often a crucial factor in many inflammatory diseases and autoimmune diseases, as well as the susceptibility to contract infectious diseases, including acute respiratory infections. Similarly, resveratrol regulates immunity, modifying the gene expression and the release of proinflammatory cytokines in the immune cells. Therefore, it plays an immunomodulatory role that can be beneficial in the prevention and development of non-communicable diseases associated with inflammation. Since both vitamin D and resveratrol also act as immunomodulators in inflammatory pathologies, many studies have paid particular attention to an integrated treatment of either vitamin D or resveratrol in the immune reaction against SARS-CoV-2 infections. This article offers a critical evaluation of published clinical trials that have examined the use of vitamin D or resveratrol as adjuncts in COVID-19 management. Furthermore, we aimed to compare the anti-inflammatory and antioxidant properties linked to the modulation of the immune system, along with antiviral properties of both vitamin D and resveratrol.


Subject(s)
COVID-19 , Humans , Vitamin D/therapeutic use , Resveratrol/pharmacology , Resveratrol/therapeutic use , SARS-CoV-2 , Vitamins/pharmacology , Vitamins/therapeutic use , Inflammation/drug therapy
2.
Molecules ; 28(9)2023 Apr 26.
Article in English | MEDLINE | ID: covidwho-2313199

ABSTRACT

This review article describes studies published over the past five years on the combination of polyphenols, which are the most studied in the field of anticancer effects (curcumin, quercetin, resveratrol, epigallocatechin gallate, and apigenin) and chemotherapeutics such as cisplatin, 5-fluorouracil, oxaliplatin, paclitaxel, etc. According to WHO data, research has been limited to five cancers with the highest morbidity rate (lung, colorectal, liver, gastric, and breast cancer). A systematic review of articles published in the past five years (from January 2018 to January 2023) was carried out with the help of all Web of Science databases and the available base of clinical studies. Based on the preclinical studies presented in this review, polyphenols can enhance drug efficacy and reduce chemoresistance through different molecular mechanisms. Considering the large number of studies, curcumin could be a molecule in future chemotherapy cocktails. One of the main problems in clinical research is related to the limited bioavailability of most polyphenols. The design of a new co-delivery system for drugs and polyphenols is essential for future clinical research. Some polyphenols work in synergy with chemotherapeutic drugs, but some polyphenols can act antagonistically, so caution is always required.


Subject(s)
Curcumin , Polyphenols , Polyphenols/therapeutic use , Curcumin/pharmacology , Curcumin/therapeutic use , Resveratrol , Antioxidants , Drug Therapy, Combination
3.
Phytother Res ; 37(4): 1590-1605, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2319168

ABSTRACT

Usually, in aerobic metabolism, natural materials including nucleic acids, proteins, and lipids can experience auxiliary injury by oxidative responses. This damage produced by reactive oxygen/nitrogen species has been identified as "oxidative stress." As a natural polyphenol got from red wine and peanuts, resveratrol is one of the most eminent anti-aging mixtures. Based on many studies', resveratrol hinders destructive effects of inflammatory causes and reactive oxygen radicals in several tissues. The nuclear erythroid 2-related factor 2 is a factor related to transcription with anti-inflammatory, antioxidant possessions which is complicated by enzyme biotransformation and biosynthesis of lipids and carbohydrates. This review provides current understanding and information about the character of resveratrol against oxidative stress and regulation of inflammation via Nrf2 signaling pathway.


Subject(s)
NF-E2-Related Factor 2 , Oxidative Stress , Humans , Resveratrol/therapeutic use , NF-E2-Related Factor 2/metabolism , Signal Transduction , Inflammation/drug therapy , Reactive Oxygen Species/metabolism , Reactive Nitrogen Species , Lipids
4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2305518

ABSTRACT

PEDV represents an ancient Coronavirus still causing huge economic losses to the porcine breeding industry. Resveratrol has excellent antiviral effects. Triacetyl resveratrol (TCRV), a novel natural derivative of resveratrol, has been recently discovered, and its pharmacological effects need to be explored further. This paper aims to explore the relationship between PEDV and TCRV, which offers a novel strategy in the research of antivirals. In our study, Vero cells and IPEC-J2 cells were used as an in vitro model. First, we proved that TCRV had an obvious anti-PEDV effect and a strong inhibitory effect at different time points. Then, we explored the mechanism of inhibition of PEDV infection by TCRV. Our results showed that TCRV could induce the early apoptosis of PEDV-infected cells, in contrast to PEDV-induced apoptosis. Moreover, we observed that TCRV could promote the expression and activation of apoptosis-related proteins and release mitochondrial cytochrome C into cytoplasm. Based on these results, we hypothesized that TCRV induced the early apoptosis of PEDV-infected cells and inhibited PEDV infection by activating the mitochondria-related caspase pathway. Furthermore, we used the inhibitors Z-DEVD-FMK and Pifithrin-α (PFT-α) to support our hypothesis. In conclusion, the TCRV-activated caspase pathway triggered early apoptosis of PEDV-infected cells, thereby inhibiting PEDV infections.


Subject(s)
Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Porcine epidemic diarrhea virus/physiology , Vero Cells , Resveratrol/pharmacology , Apoptosis , Caspases/metabolism , Antiviral Agents/pharmacology
5.
Coronaviruses ; 2(11) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2275885

ABSTRACT

Introduction: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is plaguing the entire world. Amidst the pandemic, research and development efforts are fo-cused on the challenges associated with the SARS-CoV-2 structure. Material(s) and Method(s): Efficient computational methodologies are applied to screen the available FDA-approved drugs/datasets/libraries to identify potent molecules. In the present study, we have carried out ab initio quantum chemical studies, including relativistic effects followed by molecular docking with the SARS-CoV-2 protease target by employing a tailor-made library consisting of molecular analogs of Resveratrol, a natural bioflavonoid. Result(s): The derived docking results were validated with ab initio quantum computations that in-cluded both density functional level (DFT) and Moller-Plesset second order perturbation theories (MP2). We found to be that Resveratrol and its analogs (R8 and R17) bind to the SARS-CoV-2 protease target. In addition to this, the computed IR spectrum is found in agreement with the report-ed experimental spectra for Resveratrol complexes and thus validates the modeling and reliability of proposed geometries. The solvation energies in the aqueous phase obtained using enhanced aug-cc-pVTZ basis sets confirm enhancement of bioavailability for Resveratrol through piperine, a natural alkaloid. Conclusion(s): The potential of the natural bioflavonoid Resveratrol and its analogs to be investigated through in vivo and in vitro SARS-CoV-2 protease models is concluded. The study investigated the potential of natural polyphenols as promising anti-viral therapeutics.Copyright © 2021 Bentham Science Publishers.

6.
Current Traditional Medicine ; 9(4):23-36, 2023.
Article in English | EMBASE | ID: covidwho-2261644

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide. There is no effective medication for COVID-19 as of now, so it would be good to take preventive measures that not only boost our immunity but also fight against infections. The use of traditional Chinese medicine in China to treat COVID-19 patients sets the prototype demonstrating that traditional medicines can contribute to prevention and treatment successfully. In India, the Ministry of AYUSH (Ayurveda, Yoga, Unani, Siddha, Homeop-athy) released a self-care advisory during the COVID-19 crisis as a preventive aspect. This review article discusses the therapeutic potential and clinical relevance of some herbs [(Tulsi (Ocimum sanctum), Haridra (Curcuma longa), Tvaka (Cinnamon), Maricha (Piper longum), Shunthi (Zingi-ber officinale), Munakka (Dried grapes), Lavang (Syzigiumaromaticum), Pudina (Mentha arvensis), and Ajwain (Trachyspermum ammi)] advised by AUYSH to take during COVID-19 infection. They are effective in COVID-19 management, therefore, authors have discussed their detailed traditional uses as therapeutics and spotted scientific insight and clinical significance of the herbs mentioned above along with their mechanistic viewpoint, adequately, on a single platform. Provided information could be a treasure to open up a new research arena on natural products to manage human health crises effectively, caused not only by COVID-19 but also by other infectious diseases.Copyright © 2023 Bentham Science Publishers.

7.
HIV Nursing ; 23(2):918-921, 2023.
Article in English | CINAHL | ID: covidwho-2248770

ABSTRACT

For the third year COVID-19 pandemic is still a global health challenge, despite the availability of vaccines and protection methods, treatment protocols still being updated continuously to observe the optimum management for patients. Cyclooxegynase (COX) enzymes are involved in inflammation and thrombosis related to COVID-19. COX-Thromboxane2 pathway is one of the important pathways that results in thrombus formation. In this study the COX activity level changes were measured by ELISA technique in COVID-19 plasma samples that treated with SIRT1 activators resveratrol and linear BAS SIRT1 aptamer, a significant lowering in COX activity was observed with promising potential atrithrombotic action in COVID-19 to be further investigated in future.

8.
Pril (Makedon Akad Nauk Umet Odd Med Nauki) ; 44(1): 7-16, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2288398

ABSTRACT

Background: COVID-19 is a disease in several stages starting with virus replication to dysregulation in immune system response, organ failure and recovery/death. Our aim was to determine the effect of Ganoderma lucidum, lycopene, sulforaphane, royal jelly and resveratrol extract on markers of oxidative stress, inflammation, routine laboratory analyses and duration of symptoms in COVID-19 patients. Methods: The oxidative stress parameters and interleukines 6 and 8 (IL-6, IL-8), tumor necrosis factor alpha (TNF-α) were determined in order to estimate the antioxidant and the anti-inflammatory effect of the product using a spectrophotometric and a magnetic bead-based multiplex assay in serum of 30 patients with mild form of COVID-19. Results: Statistically significant differences were obtained for all investigated parameters between the treated patients and the control group. Moreover, significant differences were observed for leukocytes, neutrophil to leukocyte ratio and iron. The average duration of the symptoms was 9.4±0.487 days versus 13.1±0.483 days in the treatment and the control group, respectively (p=0.0003). Conclusion: Our results demonstrated the promising effect of Ge132+NaturalTM on reducing the oxidative stress and the IL-6, IL-8 and TNF-α levels, and symptoms duration in COVID-19 patients. The evidence presented herein suggest that the combination of Ganoderma lucidum extract, lycopene, sulforaphane, royal jelly and resveratrol could be used as a potent an adjuvant therapy in diseases accompanied by increased oxidative stress and inflammation.


Subject(s)
Antioxidants , COVID-19 , Humans , Antioxidants/adverse effects , Resveratrol/therapeutic use , Resveratrol/pharmacology , Lycopene/therapeutic use , Lycopene/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Interleukin-8/pharmacology , Oxidative Stress/physiology , Inflammation/pathology
9.
Am J Chin Med ; 51(3): 651-676, 2023.
Article in English | MEDLINE | ID: covidwho-2269325

ABSTRACT

Pulmonary fibrosis (PF) is a progressive pulmonary disease with no effective treatment and high mortality. Resveratrol has shown promising benefits in the treatment of PF. However, the probable efficacy and underlying mechanism of resveratrol in PF treatment remain unclear. This study investigates the intervention effects and potential mechanisms underpinning the treatment of PF with resveratrol. The histopathological analysis of lung tissues in PF rats showed that resveratrol improved collagen deposition and reduced inflammation. Resveratrol decreased the levels of collagen, glutathione, superoxide dismutase, myeloperoxidase, and hydroxyproline, lowered total anti-oxidant capacity, and suppressed the migration of TGF-[Formula: see text]1 and LPS-induced 3T6 fibroblasts. With resveratrol intervention, the protein and RNA expressions of TGF-[Formula: see text]1, a-SMA, Smad3/4, p-Smad3/4, CTGF, and p-ERK1/2 were markedly downregulated. Similarly, the protein and RNA expression levels of Col-1 and Col-3 were significantly downregulated. However, Smad7 and ERK1/2 were evidently upregulated. The protein and mRNA expression levels of TGF-[Formula: see text], Smad, and p-ERK correlated positively with the lung index, while the protein and mRNA expression levels of ERK correlated negatively with the lung index. These results reveal that resveratrol may have therapeutic effects on PF by reducing collagen deposition, oxidation, and inflammation. The mechanism is associated with the regulation of the TGF-[Formula: see text]/Smad/ERK signaling pathway.


Subject(s)
Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Resveratrol/pharmacology , Resveratrol/therapeutic use , Signal Transduction , Transforming Growth Factor beta/metabolism , Inflammation , RNA, Messenger , RNA/adverse effects
10.
Curr Issues Mol Biol ; 45(1): 12-32, 2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2250666

ABSTRACT

COVID-19 disease has had a global impact on human health with increased levels of morbidity and mortality. There is an unmet need to design and produce effective antivirals to treat COVID-19. This study aimed to explore the potential ability of natural stilbenes to inhibit the Mpro protease, an acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enzyme involved in viral replication. The binding affinities of stilbene compounds against Mpro were scrutinized using molecular docking, prime molecular mechanics-generalized Born surface area (MM-GBSA) energy calculations, and molecular dynamic simulations. Seven stilbene molecules were docked with Mpro and compared with GC376 and N3, antivirals with demonstrated efficacy against Mpro. Ligand binding efficiencies and polar and non-polar interactions between stilbene compounds and Mpro were analyzed. The binding affinities of astringin, isorhapontin, and piceatannol were -9.319, -8.166, and -6.291 kcal/mol, respectively, and higher than either GC376 or N3 at -6.976 and -6.345 kcal/mol, respectively. Prime MM-GBSA revealed that these stilbene compounds exhibited useful ligand efficacy and binding affinity to Mpro. Molecular dynamic simulation studies of astringin, isorhapontin, and piceatannol showed their stability at 300 K throughout the simulation time. Collectively, these results suggest that stilbenes such as astringin, isorhapontin, and piceatannol could provide useful natural inhibitors of Mpro and thereby act as novel treatments to limit SARS-CoV-2 replication.

11.
Front Pharmacol ; 14: 1106733, 2023.
Article in English | MEDLINE | ID: covidwho-2248949

ABSTRACT

Acute Respiratory Distress Syndrome (ARDS) is triggered by a variety of insults, such as bacterial and viral infections, including SARS-CoV-2, leading to high mortality. In the murine model of ARDS induced by Staphylococcal enterotoxin-B (SEB), our previous studies showed that while SEB triggered 100% mortality, treatment with Resveratrol (RES) completely prevented such mortality by attenuating inflammation in the lungs. In the current study, we investigated the metabolic profile of SEB-activated immune cells in the lungs following treatment with RES. RES-treated mice had higher expression of miR-100 in the lung mononuclear cells (MNCs), which targeted mTOR, leading to its decreased expression. Also, Single-cell RNA-seq (scRNA seq) unveiled the decreased expression of mTOR in a variety of immune cells in the lungs. There was also an increase in glycolytic and mitochondrial respiration in the cells from SEB + VEH group in comparison with SEB + RES group. Together these data suggested that RES alters the metabolic reprogramming of SEB-activated immune cells, through suppression of mTOR activation and its down- and upstream effects on energy metabolism. Also, miR-100 could serve as novel potential therapeutic molecule in the amelioration of ARDS.

12.
J Agric Food Chem ; 71(14): 5535-5546, 2023 Apr 12.
Article in English | MEDLINE | ID: covidwho-2285961

ABSTRACT

Cell entry of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) depends on specific host cell proteases, which are the key targets for preventing and treating viral infections. Herein, we describe miyabenol C and trans-ε-viniferin, two resveratrol oligomers that specifically inhibit SARS-CoV-2 entry by targeting host protease cathepsin L. Several cell-based assays were used to demonstrate the effect of resveratrol oligomers, and their target was identified via screening of antiviral targets. Molecular docking analysis suggested that the oligomers could occupy the active cavity of cathepsin L. The surface plasmon resonance assay showed that the equilibrium dissociation constant (KD) values of miyabenol C-cathepsin L and trans-ε-viniferin-cathepsin L were 5.54 and 8.54 µM, respectively, indicating their excellent binding ability for cathepsin L. Our study demonstrated the potential application of resveratrol oligomers as lead compounds in controlling SARS-CoV-2 infection by targeting cathepsin L.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cathepsin L/chemistry , Cathepsin L/metabolism , Molecular Docking Simulation , Resveratrol , SARS-CoV-2/metabolism , Virus Internalization
13.
Plants (Basel) ; 12(3)2023 Jan 25.
Article in English | MEDLINE | ID: covidwho-2216717

ABSTRACT

Morus alba L. is used for a range of therapeutic purposes in Asian traditional medicine, and its extracts are reported to be effective against lipidemia, diabetes, and obesity, as well as being hepatoprotective and tyrosinase-inhibitory. They are also included in cosmetic products as anti-aging and skin-whitening agents. Stilbenes, the major bioactive compounds found in M. alba, have received renewed attention recently because of their putative activity against COVID-19. In this study M. alba plants were established in vitro, and the effect of elicitation on plant growth and stilbene accumulation, specifically oxyresveratrol and trans-resveratrol, was investigated. Different concentrations of the elicitors including methyl jasmonate and cyclodextrins were applied, and stilbene levels were determined in leaves, roots, and the culture medium. Elicitation of the M. alba plants with 5 mM cyclodextrins, alone or in combination with 10 µM methyl jasmonate, significantly increased the total phenolic content in the culture medium and leaves after 7 days of treatment. The higher total phenolic content in the roots of control plants and those treated only with methyl jasmonate indicated that cyclodextrins promoted metabolite release to the culture medium. Notably, the cyclodextrin-treated plants with the highest levels of oxy- and trans-resveratrol also had the highest total phenolic content and antioxidant capacity. These results indicate that elicited M. alba in vitro plants constitute a promising alternative source of bioactive stilbenes to supply pharmaceutical and cosmeceutical industries.

14.
Virol J ; 19(1): 226, 2022 12 28.
Article in English | MEDLINE | ID: covidwho-2196348

ABSTRACT

BACKGROUND: Porcine hemagglutinating encephalomyelitis virus (PHEV), a member of the genus Betacoronavirus, is the causative agent of neurological disease in pigs. No effective therapeutics are currently available for PHEV infection. Resveratrol has been shown to exert neuroprotective and antiviral effects. Here resveratrol was investigated for its ability to inhibit PHEV replication in nerve cells and central nervous system tissues. METHODS: Anti-PHEV effect of resveratrol was evaluated using an in vitro cell-based PHEV infection model and employing a mouse PHEV infection model. The collected cells or tissues were used for quantitative PCR analysis, western blot analysis, or indirect immunofluorescence assay. The supernatants were collected to quantify viral loads by TCID50 assay in vitro. EC50 and CC50 were determined by dose-response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral versus cytotoxic activity. RESULTS: Our results showed that resveratrol treatment reduced PHEV titer in a dose-dependent manner, with a 50% inhibition concentration of 6.24 µM. A reduction of > 70% of viral protein expression and mRNA copy number and a 19-fold reduction of virus titer were achieved when infected cells were treated with 10 µM resveratrol in a pre-treatment assay. Quantitative PCR analysis and TCID50 assay results revealed that the addition of 10 µM resveratrol to cells after adsorption of PHEV significantly reduced 56% PHEV mRNA copy number and eightfold virus titer. 10 µM resveratrol treatment reduced 46% PHEV mRNA copy number and fourfold virus titer in virus inactivation assay. Moreover, the in vivo data obtained in this work also demonstrated that resveratrol inhibited PHEV replication, and anti-PHEV activities of resveratrol treatment via intranasal installation displayed better than oral gavage. CONCLUSION: These results indicated that resveratrol exerted antiviral effects under various drug treatment and virus infection conditions in vitro and holds promise as a treatment for PHEV infection in vivo.


Subject(s)
Betacoronavirus 1 , Mice , Swine , Animals , Resveratrol/pharmacology , Resveratrol/metabolism , Betacoronavirus 1/genetics , Betacoronavirus 1/metabolism , Neurons , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Virus Replication
15.
Drug Deliv ; 30(1): 2162157, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2166083

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) predisposed to the emergence of worldwide catastrophe that impels the evolution of safe and effective therapeutic system. Polyphenols as resveratrol (RSV) exhibit a well evidenced antiviral activity. Unfortunately, like most phenolic nutraceuticals, RSV suffers from restrained solubility and massive degradation in GIT and liver which in turn prohibit its clinical use. Herein, PEGylated bilosomes (PBs) contain PEGylated edge activator along with the traditional components as (Span 60, cholesterol and bile salts) were proposed to boost both permeability and bioavailability of RSV. The investigation of the prominent effect of the diverse variables on the characteristics of the vesicles and picking of the optimum formula were conducted via construction of 23 factorial experiment. The appraisal of the formulae was conducted on the basis of entrapment efficiency percent (EE%), particle size (PS) and zeta potential (ZP). In addition, the spherical shaped optimal formula (F5) exhibited EE% of 86.1 ± 2.9%, PS of 228.9 ± 8.5 nm, and ZP of -39.8 ± 1.3 mV. The sorted optimum formula (F5) exhibited superior dissolution behaviors, and boosted Caco-2 cells cellular uptake by a round 4.7 folds relative to RSV dispersion. In addition, F5 demonstrated a complete in vitro suppression of SARS-CoV-2 at a concentration 0.48 µg/ml with 6.6 times enhancement in antiviral activity relative to RSV dispersion. The accomplished molecular modeling heavily provided proof for the possible interactions of resveratrol with the key residues of the SARS-CoV2 Mpro enzyme. Finally, F5 could be proposed as a promising oral panel of RSV for curation from SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Caco-2 Cells , Resveratrol/pharmacology , Antiviral Agents/pharmacology , RNA, Viral , Polyethylene Glycols , Permeability , Particle Size
16.
Journal of Men's Health ; 18(10), 2022.
Article in English | Web of Science | ID: covidwho-2100930

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the COVID-19 pandemic. The viral protein of SARS-CoV-2, spike protein (SP), mediates entry into host cells, contributing to pathogenesis of COVID-19. Prostate cancer is the most common cancer among men in the United States. Inducible T-cell costimulator ligand (ICOSL) and intercellular cell adhesion molecule 2 (ICAM-2) are expressed in cancer cells and their roles in cancer growth remain controversial. It is unknown if SP can affect the expression of ICAM-2 or ICOSL in prostate cancer. This study investigated the effects of SARS-CoV-2 SP on the expression of ICAM-2 and ICOSL and the time-dependent effect of SP on growth and survival of prostate cancer cells. Methods: The effect of SARS-CoV-2 SP on the survival of a widely-used prostate cancer cell line, LNCaP, was assessed using clonogenic cell survival assay and quick cell proliferation assay. Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were performed to investigate the expression of ICAM-2 and ICOSL. The survival of an additional prostate cancer cell line, PC-3, was also evaluated by clonogenic survival assay. Results: After 3 days, a significant decrease in the percentage of colonies in LNCaP cells treated with SP was found, which was paralleled by a decrease in optical density (OD) value in LNCaP cells in the presence of SP. A significant decrease in the percentage of colonies treated with SP was also found in PC-3 cells evaluated by clonogenic survival assay. In addition, the mRNA expression of ICAM-2 was lower, whereas the mRNA expression of ICOSL was higher in SP-treated LNCaP cells. This was supported by protein expressions for ICAM-2 and ICOSL evaluated with IHC. Conclusions: In LNCaP cells, SARS-CoV-2 SP downregulates the expression of ICAM-2 but upregulates the expression of ICOSL. SARS-CoV-2 SP inhibits growth of prostate cancer cells in a time-dependent manner. Further studies are needed to fully address the roles of ICAM-2 and ICOSL in the inhibition prostate cancer growth by SARS-CoV-2 SP.

17.
Drug Deliv ; 29(1): 3155-3167, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2062643

ABSTRACT

Resveratrol (RSV) is a phytoceutical polyphenolic compound exhibiting a well evidenced wide range of therapeutic activities. Unfortunately, its diminished aqueous solubility and extensive metabolism in gastro intestinal tract (GIT) and liver prohibit its biological activity and systemic availability. Herein the conducted study PEG stabilized emulsomes (PEMLs) were customized to enclose RSV aiming to boost its biological availability and antiviral activity. PEGylating the vesicles not only grant the promoted steric stability of the system but also being beneficial in exaggerating the intestinal permeability and extending the period of circulation of the drug, hence its targeted clinical use. The Investigation of the influence of predetermined variables on the physical characterization of formulae (entrapment efficiency EE%, particle size PS and zeta potential ZP) was implemented utilizing Design Expert® software. (F4) with desirability value (0.772), picked to be the optimal formula, which is fabricated utilizing 35 mg compritol as the lipidic core and 60 mg 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000] (DSPE-Mpeg-2000). The dominance of the F4 relative to RSV dispersion was affirmed by the data acquired from ex-vivo and pharmacokinetic studies. In addition, F4 exhibited significant lower EC50 value (0.0127 µg/mL) relative to that of RSV dispersion(0.338 µg/mL) by around 26 times denoting the capability of the formulation to boost the antiviral activity. To a great extent, F4 was able to significantly suppress the inflammatory response and oxidative stress resulted from MERS-CoV infection on comparison with RSV dispersion. Finally, the potentiality of PEMLs as nano-panel with boosted both antiviral and oral bioavailability for RSV could be deduced based on the outcomes mentioned herein.


Subject(s)
Excipients , Polyethylene Glycols , Antiviral Agents/pharmacology , Biological Availability , Particle Size , Resveratrol
18.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2005919

ABSTRACT

The formation of microthrombi in lung autopsies indicates the involvement of NETs in the immunopathogenesis of severe COVID-19. Therefore, supplements inhibiting NET formation, in association with drugs with fewer adverse effects, should be a relevant strategy to attenuate the disease. Resveratrol (RESV) is a natural polyphenol with an important antiviral and antioxidant role. To modulate neutrophils from patients infected with SARS-CoV-2, we evaluated the in vitro effect of RESV on NET formation. Herein, we investigated 190 patients hospitalized with moderate, severe, and critical symptoms at Hospital das Clínicas, Brazil. We observed that neutrophilia in patients with severe COVID-19 infection is composed of neutrophils with activated profile able to release NET spontaneously. Notably, RESV decreased the neutrophil-activated status and the release of free DNA, inhibiting NET formation even under the specific PMA stimulus. At present, there is no evidence of the role of RESV in neutrophils from patients with COVID-19 infection. These findings suggest that adjunctive therapies with RESV may help decrease the inflammation of viral or bacterial infection, improving patient outcomes.

20.
Postepy Higieny I Medycyny Doswiadczalnej ; 76(1):188-198, 2022.
Article in English | Web of Science | ID: covidwho-1928395

ABSTRACT

Coronavirus 2019 (COVID-19) is an infectious disease that has brought life to a standstill around the world. Until a vaccine was found to combat COVID-19, the world conducted research and made recommendations for nutritional natural foods. Considering the risks incurred by contracting the disease, even though the production of various vaccines and vaccination of healthy people has started in some countries, individuals need useful foods to be ready for the COVID-19 pandemic. Recently, nutrient contents such as antioxidant compounds, vitamins, minerals, and probiotics that contribute to the immune system have been investigated. This paper attempts to determine the role of these dietary supplements in reducing the risk of COVID-19 and/or changing the course of the disease in COVID-19 patients and their effects on mortality. Supplements used and recommended for the COVID-19 pandemic life were investigated. In conclusion, more research is needed to determine the effectiveness of nutrients, vitamins, minerals, probiotics, prebiotics, and antioxidants used during the COVID-19 pandemic to inhibit the effect of SARS-CoV-2. In order to overcome the new global crisis, nutritional cures and treatments should be upgraded. However, additional research on the subject is needed.

SELECTION OF CITATIONS
SEARCH DETAIL